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1. MOTIVATING EXAMPLES



RANDOM WALK ON PERCOLATION CLUSTERS

Bond percolation on integer lattice Z
d (d ≥ 2), parameter p > pc.

e.g. p = 0.54,

Given a configuration ω, let Xω be the (continuous time) sim-

ple random walk on the unique infinite cluster – the ‘ant in

the labyrinth’ [de Gennes 1976]. For Pp-a.e. realisation of the

environment,

qωt (x, y) =
Pω
x (Xω

t = y)

degω(y)
≍ c1t

−d/2e−c2|x−y|2/t

for t ≥ |x− y| ∨ Sx(ω) [Barlow 2004].



RANDOM WALK ON PERCOLATION CLUSTERS

Bond percolation on integer lattice Z
d (d ≥ 2), parameter p > pc.

e.g. p = 0.54,

[Sidoravicius/Sznitman 2004, Biskup/Berger 2007, Mathieu/

Piatnitski 2007] For Pp-a.e. realisation of the environment
(

n−1Xω
n2t

)

t≥0
→ (Bσt)t≥0

in distribution, where σ ∈ (0,∞) is a deterministic constant.



ANOMALOUS BEHAVIOUR AT CRITICALITY

At criticality, p = pc, physicists conjectured that the associated

random walks had an anomalous spectral dimension [Alexan-

der/Orbach 1982]: for every d ≥ 2,

ds = −2 lim
n→∞

logPω
x (Xω

2n = x)

logn
=

4

3
.

[Kesten 1986] constructed the law of the incipient infinite clus-

ter in two dimensions, i.e.

PIIC = lim
n→∞

Ppc

(

· 0 ↔ ∂[−n, n]2
)

,

and showed that random walk on the IIC in two dimensions

satisfies:
(

n−1
2+εXIIC

n

)

n≥0

is tight – this shows the walk is subdiffusive.



ANOMALOUS DIFFUSIONS ON FRACTALS

Interest from physicists [Rammal/Toulouse 1983], and construc-

tion of diffusion on fractals such as the Sierpinski gasket:

[Barlow/Perkins 1988] constructed diffusion (see also [Kigami

1989]), and established sub-Gaussian heat kernel bounds:

qt(x, y) ≍ c1t
−ds/2 exp

{

−c2(|x− y|dw/t)
1

dw−1

}

.

NB. ds/2 = df/dw – the Einstein relation. More robust tech-

niques applicable to random graphs since developed.



THE ‘d = ∞’ CASE

Let T be a d-regular tree. Then pc = 1/d. We can define

PIIC = lim
n→∞

Ppc ( · ρ ↔ generation n) ,

e.g. [Kesten 1986].

[Barlow/Kumagai 2006] show AO conjecture holds for PIIC-a.e.

environment, PIIC-a.s. subdiffusivity

lim
n→∞

logEIIC
ρ (τn)

logn
= 3,

and sub-Gaussian annealed heat kernel bounds.

Similar techniques used/results established for oriented perco-

lation in high dimensions [Barlow/Jarai/Kumagai/Slade 2008],

invasion percolation on a regular tree [Angel/Goodman/den Hol-

lander/Slade 2008], see also [Kumagai/Misumi 2008].



PROGRESS IN HIGH DIMENSIONS

Law PIIC of the incipient infinite cluster in high dimensions

constructed in [van der Hofstad/Járai 2004].

Fractal dimension (in intrinsic metric) is 2. Unique backbone,

scaling limit is Brownian motion. Scaling limit of IIC is related

to integrated super-Brownian excursion [Kozma/Nachmias

2009, Heydenreich/van der Hofstad/Hulshof/Miermont 2013,

Hara/Slade 2000].

Random walk on IIC satisfies AO conjecture (ds = 4/3), and

behaves subdiffusively [Kozma/Nachmias 2009], e.g. PIIC-a.s.,

lim
n→∞

logEω
0(τn)

logn
= 3.

See also [Heydenreich/van der Hofstad/Hulshof 2014].



CRITICAL GALTON-WATSON TREES

Let Tn be a Galton-Watson tree with a critical (mean 1), ape-

riodic, finite variance offspring distribution, conditioned to have

n vertices, then

n−1/2Tn → T ,

where T is (up to a deterministic constant) the Brownian con-

tinuum random tree (CRT) [Aldous 1993], also [Duquesne/Le

Gall 2002].

Result includes various combinatorial random trees. Similar re-

sults for infinite variance case.



CRITICAL BRANCHING RANDOM WALK

Given a graph tree T with root ρ, let (δ(e))e∈E(T) be a collection

of edge-indexed, i.i.d. random variables. We can use this to

embed the vertices of T into R
d by:

v 7→
∑

e∈[[ρ,v]]

δ(e).

If Tn are critical Galton-Watson trees with finite exponential

moment offspring distribution, and δ(e) are centred and satisfy

P(δ(e) > x) = o(x−4), then the corresponding branching ran-

dom walk has an integrated super-Brownian excursion scaling

limit [Janson/Marckert 2005].



CRITICAL ERDŐS-RÉNYI RANDOM GRAPH

G(n, p) is obtained via bond percolation with parameter p on

the complete graph with n vertices. We concentrate on critical

window: p = n−1 + λn−4/3. e.g. n = 100, p = 0.01:

All components have:

- size Θ(n2/3) and surplus Θ(1) [Erdős/Rényi 1960], [Aldous

1997],

- diameter Θ(n1/3) [Nachmias/Peres 2008].

Moreover, asymptotic structure of components is related to the

Brownian CRT [Addario-Berry/Broutin/Goldschmidt 2010].



TWO-DIMENSIONAL UNIFORM SPANNING TREE

Let Λn := [−n, n]2 ∩ Z
2.

A subgraph of the lattice is a spanning
tree of Λn if it connects all vertices and

has no cycles.

Let U(n) be a spanning tree of Λn se-

lected uniformly at random from all pos-

sibilities.

The UST on Z
2, U , is then the local limit of U(n).

Almost-surely, U is a spanning tree of Z
2. (Forest for d > 4.)

Fractal dimension 8/5. SLE-related scaling limit.

[Aldous, Barlow, Benjamini, Broder, Häggström, Kirchoff, Lawler,

Lyons, Masson, Pemantle, Peres, Schramm, Werner, Wilson,. . . ]



RANDOM WALKS ON RANDOM TREES

AND GRAPHS AT CRITICALITY

In the following, the aim is to:

• Introduce techniques for showing random walks on (some of)

the above random graphs converge to a diffusion on a fractal;

• Study the properties of these scaling limits.

Brief outline:

2. Gromov-Hausdorff and related topologies

3. Dirichlet forms and diffusions on real trees

4. Traces and time change

5. Scaling random walks on graph trees

. . .

6. Fusing and the critical random graph

7. Spatial embeddings

8. Local times and cover times



2. GROMOV-HAUSDORFF AND RELATED

TOPOLOGIES



HAUSDORFF DISTANCE

The Hausdorff distance between two non-empty compact sub-

sets K and K ′ of a metric space (M,dM) is defined by

dHM(K,K ′) := max

{

sup
x∈K

dM(x,K ′), sup
x′∈K′

dM(x′,K)

}

= inf
{

ε > 0 : K ⊆ K ′
ε, K

′ ⊆ Kε

}

,

where Kε := {x ∈ M : dM(x,K) ≤ ε}.

If (M,dM) is complete (resp. compact), then so is the collection

of non-empty compact subsets equipped with this metric.



GROMOV-HAUSDORFF DISTANCE

For two non-empty compact metric spaces (K, dK), (K ′, dK′),

the Gromov-Hausdorff distance between them is defined by set-

ting

dGH(K,K ′) := inf dHM(φ(K), φ′(K ′)),

where the infimum is taken over all metric space (M,dM) and

isometric embeddings φ : K → M , φ′ : K ′ → M .

The function dGH is a metric on the collection of (isometry

classes of) non-empty compact metric spaces. Moreover, the

resulting metric space is complete and separable.

For background, see [Gromov 2006, Burago/Burago/Ivanov 2001].



CORRESPONDENCES

A correspondence C is a subset of K × K ′ such that for every

x ∈ K there exists an x′ ∈ K ′ such that (x, x′) ∈ C, and vice versa.

The distortion of a correspondence is:

dis C = sup
{

|dK(x, y)− dK′(x′, y′)| : (x, x′), (y, y′) ∈ C
}

.

An alternative characterisation of the Gromov-Hausdorff dis-

tance is then:

dGH(K,K ′) =
1

2
inf dis C.



EXAMPLE: CONVERGENCE OF GW TREES

Let Tn be a Galton-Watson tree with a critical (mean 1), ape-

riodic, finite variance σ2 offspring distribution, conditioned to

have n vertices, then
(

Tn,
σ

2n1/2
dTn

)

→ (T , dT )

in distribution, with respect to the Gromov-Hausdorff topology.

The limiting tree is the Brownian continuum random tree, cf.

[Aldous 1993].



DISCRETE CONTOUR FUNCTION

Given an ordered graph tree T , its contour function measures

the height of a particle that traces the ‘contour’ of the tree at

unit speed from left to right.

e.g. If a GW tree has a geometric, parameter 1
2, distribution,

then the contour function is precisely a random walk stopped at

the first time it hits −1 [Harris 1952]. Conditioning tree to have

n vertices equivalent to conditioning the walk to hit −1 at time

2n− 1.



CONVERGENCE OF CONTOUR FUNCTIONS

Let (Cn(t))t∈[0,2n−1] be the contour function of Tn. Then

(

σ

2n1/2
C2(n−1)t

)

t∈[0,1]
→ (Bt)t∈[0,1] ,

in distribution in the space C([0,1],R), where the limit process

is Brownian excursion normalised to have length one.

See [Marckert/Mokkadem 2003] for a nice general proof.



EXCURSIONS AND REAL TREES

Consider an excursion (e(t))t∈[0,1] – that is, a continuous func-

tion that satisfies e(0) = e(1) = 0 and is strictly positive for

t ∈ (0,1).

Define a distance on [0,1] by setting

de(s, t) := e(s) + e(t)− 2 min
r∈[s∧t,s∨t]

e(r).

Then we obtain a (compact) real tree (see definition below) by

setting Te = [0,1]/ ∼, where s ∼ t iff de(s, t) = 0. [Duquesne/Le

Gall 2004]



CONVERGENCE IN GH TOPOLOGY

Let T = TB – this is the Brownian continuum random tree.

Since C([0,1],R) is separable, we can couple (rescaled) contour

processes so that they converge almost-surely. Consider corre-

spondence between Tn and T given by

C = {([⌈2(n− 1)t⌉]n, [t]) : t ∈ [0,1]} ,

where [t] is the equivalence class of t with respect to ∼, and

similarly for [t]n. This satisfies

dis C ≤ 4

∥

∥

∥

∥

σ

2n1/2
C2(n−1)· −B

∥

∥

∥

∥

∞
→ 0.

Hence

dGH

((

Tn,
σ

2n1/2
dTn

)

, (T , dT )

)

≤ 2

∥

∥

∥

∥

σ

2n1/2
C2(n−1)· −B

∥

∥

∥

∥

∞
→ 0.



INCORPORATING POINTS AND MEASURE

For two non-empty compact pointed metric probability measure

spaces (K, dK, µK, ρK), (K ′, dK′, µK′, ρK′), we define a distance

by setting dGHP (K,K ′) to be equal to

inf
{

dM(φ(ρK), φ′(ρK′)) + dHM(φ(K), φ′(K ′)) + dPM(µK ◦ φ−1, µK′ ◦ φ′−1)
}

,

where the infimum is taken over all metric space (M,dM) and

isometric embeddings φ : K → M , φ′ : K ′ → M . Here dPM is the

Prohorov metric between probability measures on M , i.e.

dPM(µ, ν) = inf{ε : µ(A) ≤ ν(Aε) + ε, ν(A) ≤ µ(Aε) + ε, ∀A}.

The function dGHP is a metric on the collection of (measure

and root preserving isometry classes of) non-empty compact

pointed metric probability measure spaces. (Again, complete

and separable.) [Abraham/Delmas/Hoscheit 2013]



EXAMPLE: GHP CONVERGENCE OF GW TREES

Let Tn be a Galton-Watson tree with a critical (mean 1), ape-

riodic, finite variance σ2 offspring distribution, conditioned to

have n vertices. Let µTn be the uniform probability measure on

Tn, and ρTn its root. Then

(

Tn,
σ

2n1/2
dTn,

1

n
µTn, ρTn

)

→ (T , dT , µT , ρT )

in distribution, with respect to the topology induced by dGHP .

The limiting tree is the Brownian continuum random tree. In

the excursion construction ρT = [0], and

µT = λ ◦ p−1,

where λ is Lebesgue measure on [0,1] and p : t 7→ [t] is the

canonical projection.



PROOF IDEA

Consider two length one excursions e and f . As before, define

a correspondence C = {([t]e, [t]f) : t ∈ [0,1]}, and note that

dis C ≤ 4 ‖e− f‖∞. Let M = Te ⊔ Tf , with metric dM equal to

dTe, dTf on Te, Tf resp., and

dM(x, x′) = inf{dTe(x, y) +
1
2dis C + dTf(y

′, x′) : (y, y′) ∈ C},

for x ∈ Te, x′ ∈ Tf . Then

dM([0]e, [0]f) = 1
2dis C = dHM(Te, Tf).

Moreover, if A is a measurable subset of Te and B = pf(p
−1
e (A)) ⊆

Tf , then B ⊆ Aε for ε > 1
2dis C and

µTe(A) ≤ µTf(B) ≤ µTe(Aε).

By symmetry, it follows that

dPM(µTe, µTf) ≤ 1
2dis C.



3. DIRICHLET FORMS AND DIFFUSIONS ON REAL

TREES



REAL TREES

A compact real tree (T , dT ) is an arcwise-connected compact

topological space containing no subset homeomorphic to the cir-

cle. Moreover, the unique arc between two points x, y is isomet-

ric to [0, dT (x, y)]. (cf. compact metric trees [Athreya/Lohr/Winter].)

In particular, the metric dT on a real tree is additive along paths,

i.e. if x = x0, x1, . . . , xN = y appear in order along an arc

x = x0

x1

xN = y

then

dT (x, y) =
N
∑

i=1

dT (xi−1, xi).



APPROACH FOR CONSTRUCTING A DIFFUSION

Given a compact real tree (T , dT ) and finite Borel measure µT

of full support, we aim to construct a quadratic form ET that is

a local, regular Dirichlet form on L2(µT ).

Then, through the standard association

ET (f, g) = −
∫

T
(∆T f)gdµT ⇔ PT

t = et∆T ,

define Brownian motion on (T , dT , µT ) to be the Markov process

with generator ∆T .

We follow the construction of [Athreya/Eckhoff/Winter 2013],

see also [Krebs 1995] and [Kigami 1995].



DIRICHLET FORM DEFINITION

Let (T , dT ) be a compact real tree, and µT be a finite Borel
measure of full support. A Dirichlet form (ET ,FT ) on L2(µT )
is a bilinear map FT ×FT → R that is:

• symmetric, i.e. ET (f, g) = ET (g, f),

• non-negative, i.e. ET (f, f) ≥ 0,

• Markov, i.e. if f ∈ FT , then so is f̄ := (0 ∨ f) ∧ 1 and
ET (f̄ , f̄) ≤ ET (f, f),

• closed, i.e. FT is complete w.r.t.

ET
1 (f, f) := ET (f, f) +

∫

T
f(x)2µT (dx),

• dense, i.e. FT is dense in L2(µT ).

It is regular if FT ∩C(T ) is dense in FT w.r.t. ET
1 , and dense in

C(T ) w.r.t. ‖ · ‖∞.



ASSOCIATION WITH SEMIGROUP
[Fukushima/Oshima/Takeda 2011, Sections 1.3-1.4] Let (PT

t )t≥0

be a strongly continuous µT -symmetric Markovian semigroup on

L2(µT ). For f ∈ L2(µT ), define

ET
t (f, f) := t−1

∫

T
(f − PT

t f)fdµT .

This is non-negative and non-decreasing in t. Let

ET (f, f) := lim
t↓0

ET
t (f, f), FT :=

{

f ∈ L2(µT ) : lim
t↓0

ET
t (f, f) < ∞

}

.

Then (ET ,FT ) is a Dirichlet form on L2(µT ). Moreover, if ∆T
is the infinitesimal generator of (PT

t )t≥0, then D(∆T ) ⊆ FT ,

D(∆T ) is dense in L2(µT ) and

ET (f, g) = −
∫

T
(∆T f)gdµT , ∀f ∈ D(∆T ), g ∈ FT .

Conversely, if (ET ,FT ) is a Dirichlet form on L2(µT ), then there

exists a strongly continuous µT -symmetric Markovian semigroup

on L2(µT ) whose generator satisfies the above.



DIRICHLET FORMS ON GRAPHS

Let G = (V (G), E(G)) be a finite graph. Let λG = (λGe )e∈E(G)

be a collection of edge weights, λGe ∈ (0,∞).

Define a quadratic form on G by setting

EG(f, g) =
1

2

∑

x,y:x∼y
λGxy (f(x)− f(y)) (g(x)− g(y)) .

Note that, for any finite measure µG on V (G) (of full support),

EG is a Dirichlet form on L2(µG), and

EG(f, g) = −
∑

x∈V (G)

(∆Gf)(x)g(x)µ
G({x}),

where

(∆Gf)(x) :=
1

µG({x})

∑

y: y∼x
λGxy(f(y)− f(x)).



A FIRST EXAMPLE FOR A REAL TREE

For (T , dT ) = ([0,1],Euclidean) and µ be a finite Borel measure

of full support on [0,1]. Let λ be Lebesgue measure on [0,1],

and define

E(f, g) =

∫ 1

0
f ′(x)g′(x)λ(dx), ∀f, g ∈ F ,

where F = {f ∈ C([0,1]) : f is abs. cont. and f ′ ∈ L2(λ)}. Then

(E,F) is a regular Dirichlet form on L2(µ). Note that

E(f, g) = −
∫ 1

0
(∆f)(x)g(x)µ(dx), ∀f ∈ D(∆), g ∈ F ,

where ∆f = d
dµ

df
dx, and D(∆) contains those f such that: f ′

exists and df ′ is abs. cont. w.r.t. µ, ∆f ∈ L2(µ), and f ′(0) =

f ′(1) = 0.

If µ = λ, then the Markov process naturally associated with ∆

is reflected Brownian motion on [0,1].



GRADIENT ON REAL TREES

Let (T , dT ) be a compact real tree, with root ρT .

Let λT be the ‘length measure’ on T , and define orientation-

sensitive integration with respect to λT by
∫ y

x
g(z)λT (dz) =

∫ y

bT (ρT ,x,y)
g(z)λT (dz)−

∫ x

bT (ρT ,x,y)
g(z)λT (dz).

Write

A = {f ∈ C(T ) : f is locally absolutely continuous} .

Proposition. If f ∈ A, then there exists a unique function

g ∈ L1
loc(λ

T ) such that

f(y)− f(x) =

∫ y

x
g(z)λT (dz).

We say ∇T f = g.



DIRICHLET FORMS ON REAL TREES

Let (T , dT , ρT ) be a compact, rooted real tree, and µT a finite

Borel measure on T with full support. Define

FT :=
{

f ∈ A : ∇T f ∈ L2(λT )
} (

⊆ L2(µT )
)

.

For f, g ∈ FT , set

ET (f, g) =

∫

T
∇T f(x)∇T g(x)λT (dx).

Proposition. (ET ,FT ) is a local, regular Dirichlet form on

L2(µT ).

NB. By saying the Dirichlet form is local, it is meant that

ET (f, g) = 0

whenever the support of f and g are disjoint.



BROWNIAN MOTION ON REAL TREES

Let (T , dT , ρT ) be a compact, rooted real tree, and µT a finite

Borel measure on T with full support.

From the standard theory above, there is a non-positive self-

adjoint operator ∆T on L2(µT ) with D(∆T ) ⊆ FT and

ET (f, g) = −
∫

T
(∆T f)(x)g(x)µT (dx),

for every f ∈ D(∆T ), g ∈ FT .

We define Brownian motion on (T , dT , µT ) to be the Markov

process
(

(

XT
t

)

t≥0
,
(

PT
x

)

x∈T

)

with semigroup PT
t = et∆T . Since (ET ,FT ) is local and regular,

this is a diffusion.



PROPERTIES OF LIMITING PROCESS

Point recurrence: For x, y ∈ T , PT
x (τy < ∞) = 1.

Hitting probabilities: For x, y, z ∈ T ,

PT
z (τx < τy) =

dT (bT (x, y, z), y)

dT (x, y)
.

x
b

z

y

Occupation density: For x, y ∈ T ,

ET
x

∫ τy

0
f(XT

s )ds =

∫

T
f(x)dT (bT (x, y, z), y)µT (dz).

[cf. Aldous 1991]



RESISTANCE CHARACTERISATION: GRAPHS

As above, let G = (V (G), E(G)) be a finite graph, with edge
weights λG = (λGe )e∈E(G).

Suppose we view G as an electrical network with edges assigned
conductances according to λG. Then the electrical resistance
between x and y is given by

RG(x, y)
−1 = inf

{

EG(f, f) : f(x) = 1, f(y) = 0
}

.

RG is a metric on V (G), e.g. [Tetali 1991], and characterises
the weights (and therefore the Dirichlet form) uniquely [Kigami
1995].

For a graph tree T , one has

RT (x, y) = dT (x, y),

where dT is the weighted shortest path metric, with edges weighted
according to (1/λGe )e∈E(G).



RESISTANCE CHARACTERISATION: REAL TREES

Again, let (T , dT , ρT ) be a compact, rooted real tree, and µT a

finite Borel measure on T with full support.

Similarly to the graph case, define the resistance on T by

RT (x, y)−1 = inf
{

ET (f, f) : f ∈ FT , f(x) = 1, f(y) = 0
}

.

One can check that RT = dT . By results of [Kigami 1995]

on ‘resistance forms’, it is possible to check that this property

characterises (ET ,FT ) uniquely amongst the collection of regular

Dirichlet forms on L2(µT ).

Note that, for all f ∈ FT ,

|f(x)− f(y)|2 ≤ ET (f, f)dT (x, y).



PROOF OF POINT RECURRENCE

[Fukushima/Oshima/Takeda 2011, Lemma 2.2.3] If ν is a pos-

itive Radon measure on T with finite energy integral, i.e.,
(∫

T
|f(x)|ν(dx)

)2
≤ c

(

ET (f, f) +
∫

T
f(x)2µT (dx)

)

, ∀f ∈ FT ,

then ν charges no set of zero capacity.

Note that
(∫

T
|f(z)|δx(dz)

)2
= f(x)2 ≤ 2(f(x)− f(y))2 +2f(y)2.

Applying the resistance inequality to this bound, and integrating

with respect to y yields

(∫

T
|f(y)|δx(dy)

)2
≤ 2 diamTf ET (f, f) + 2

∫

T
f(y)2µT (dy).

Thus points have strictly positive capacity.



PROOF OF OCCUPATION DENSITY FORMULA

Let g(z) = gy(x, z) = dT (bT (x, y, z), y), then

∇g = 1[[bT (ρT ,x,y),x]](z)− 1[[bT (ρT ,x,y),y]](z).

And for h ∈ FT with h(y) = 0,

ET (g, h) =

∫ x

bT (ρT ,x,y)
∇h(z)λT (dz)−

∫ y

bT (ρT ,x,y)
∇h(z)λT (dz) = h(x).

Hence, if Gf(x) :=
∫

T gy(x, z)f(z)µT (dz), then

ET (Gf, h) =
∫

T
f(z)h(z)µT (dz).

Since the resolvent is unique, to complete the proof it is enough

to note that

G̃f(x) := ET
x

∫ τy

0
f(XT

s )ds =

∫ ∞

0
P
T \{y}
t f(x)dt

also satisfies the previous identity.



4. TRACES AND TIME CHANGE



TRACE OF THE DIRICHLET FORM

Through this section, let (T , dT , ρT ) be a compact, rooted real

tree, and µT a finite Borel measure on T with full support.

Suppose T ′ is a non-empty subset of T .

Define the trace of (ET ,FT ) on T ′ by setting:

Tr
(

ET |T ′
)

(g, g) := inf
{

ET (f, f) : f ∈ FT , f |T ′ = g
}

,

where the domain of Tr(ET |T ′) is precisely the collection of func-

tions for which the right-hand side is finite.

Theorem. If T ′ is closed, and µT
′
is a finite Borel measure on

(T ′, dT ) with full support, then Tr
(

ET |T ′
)

is a regular Dirichlet

form on L2(µT
′
) [Fukushima/Oshima/Takeda 2011].



APPLICATION TO REAL TREES

Suppose T ′ ⊆ T is closed and arcwise-connected (so that (T ′, dT )

is a real tree), equipped with a finite Borel measure µT
′
of full

support. We claim that

ET ′
= Tr

(

ET |T ′
)

.

Indeed, both are regular Dirichlet forms on L2(µT
′
), and

inf
{

Tr
(

ET |T ′
)

(g, g) : g(x) = 1, g(y) = 0
}

= inf
{

inf
{

ET (f, f) : f ∈ FT , f |T ′ = g
}

: g(x) = 1, g(y) = 0
}

= inf
{

ET (f, f) : f ∈ FT , f(x) = 1, f(y) = 0
}

= dT (x, y)−1.

In particular, Tr(ET |T ′) is the form naturally associated with

Brownian motion on (T ′, dT , µ
T ′
).



TIME CHANGE

Given a finite Borel measure ν with support S ⊆ T , let (At)t≥0 be

the positive continuous additive functional with Revuz measure

ν. For example, if XT admits jointly continuous local times

(Lt(x))x∈T ,t≥0, i.e.

∫ t

0
f(XT

s )ds =

∫

T
f(x)Lt(x)µT (dx), ∀f ∈ C(T ),

then

At =

∫

S
Lt(x)ν(dx).

Set

τ(t) := inf{s > 0 : As > t}.

Then (XT
τ(t)

)t≥0 is the Markov process naturally associated with

Tr
(

ET |S
)

, considered as a regular Dirichlet form on L2(ν).



APPLICATION TO FINITE SUBSETS

Let V be a fine finite set of T . If we define EV = Tr(ET |V ), then

one can check for any finite measure µV on V with full support

EV (f, g) =
1

2

∑

x,y:x∼y

1

dT (x, y)
(f(x)− f(y)) (g(x)− g(y))

= −
∑

x
(∆f)(x)g(x)µV ({x}),

where

∆f(x) :=
∑

y:y∼x

1

µV ({x})dT (x, y)
(f(y)− f(x)) .



PROOF OF HITTING PROBABILITIES FORMULA

Let V = {x, y, z, bT (x, y, z)}.

x
b

z

y

For any µV such that µ({v}) ∈ (0,∞) for all v ∈ V , we have
PT
x -a.s.,

At =

∫ t

0
1V (XT

s )dAs, inf{t : At > 0} = inf{t : XT
t ∈ V }.

[Fukushima/Oshima/Takeda 2011] It follows that the hitting
distributions of XV

t = XT
τ(t)

and XT are the same. Thus

PT
z (τx < τy) = PV

z (τx < τy) =
dT (bT (x, y, z), y)

dT (x, y)
.



5. SCALING RANDOM WALKS ON GRAPH TREES



AIM

Let (Tn)n≥1 be a sequence of finite graph trees, and µTn the

counting measure on V (Tn).

(A1) There exist null sequences (an)n≥1, (bn)n≥1 such that
(

Tn, andTn, bnµTn, ρTn

)

→ (T , dT , µT , ρT )

with respect to the pointed Gromov-Hausdorff-Prohorov topol-

ogy.

We aim to show that the corresponding simple random walks

XTn, started from ρTn, converge to Brownian motion XT on

(T , dT , µT ), started from ρT .



ASSUMPTION ON LIMIT

From the convergence assumption (A1) we have that: (T , dT , µT , ρT )

is a compact real tree, equipped with a finite Borel measure µT ,

and distinguished point ρT .

(A2) There exists a constant c > 0 such that

lim inf
r→0

inf
x∈T

r−cµT (BT (x, r)) > 0.

This property is not necessary, but allows a sample path proof.

In particular, it ensures that XT admits jointly continuous local

times (Lt(x))x∈T ,t≥0, i.e.

∫ t

0
f(XT

s )ds =

∫

T
f(x)Lt(x)µT (dx), ∀f ∈ C(T ).



A NOTE ON THE TOPOLOGY

The assumption (A1) is equivalent to there existing isometric

embeddings of (Tn, dTn)n≥1 and (T , andT ) into the same metric

space (M,dM) such that:

dM(ρTn, ρT ) → 0, dHM(Tn, T ) → 0, dPM(bnµTn, µT ) → 0.

Indeed, one can take

M = T1 ⊔ T2 ⊔ · · · ⊔ T

equipped with suitable metric (cf. end of Section 2).

We will identify the various objects with their embeddings into

M , and show convergence of processes in the space D(R+,M).



PROJECTIONS

Let (xi)i≥1 be a dense sequence in T , and set

T (k) := ∪k
i=1[[ρT , xi]],

where [[ρT , xi]] is the unique path from ρT to xi in T .

Let φk : T → T (k) be the map such that φk(x) is the nearest

point of T (k) to x. (We call this the projection of T onto

T (k).)

For each n, choose (xni )i≥1 in Tn such that

dM(xni , xi) → 0,

and define the subtree Tn(k) and projection φn,k : Tn → Tn(k)

similarly to above.



CONVERGENCE CRITERIA

It is possible to check that the assumption (A1) is equivalent to

the following two conditions holding:

1. Convergence of finite dimensional distributions: for each k,

dHM(Tn(k), T (k)) → 0, dPM(bnµn,k, µk) → 0,

where µn,k := µTn ◦ φ−1
n,k and µk := µT ◦ φ−1

k .

2. Tightness:

lim
k→∞

lim sup
n→∞

dHM(Tn(k), Tn) = 0.



STRATEGY

Select Tn(k) and T (k) as above:

Tn Tn(k), k = 2

xn2

ρTn

xn1

TT (k), k = 2

x2

ρT

x1

Step 1: Show Brownian motion XT (k) on (T (k), dT , µk) con-

verges to XT .

Step 2: For each k, construct processes XTn(k) on graph sub-

trees that converge to XT (k).

Step 3: Show XTn(k) are close to XTn as k → ∞.



STEP 1

APPROXIMATION OF LIMITING DIFFUSION



TIME CHANGE CONSTRUCTION

Define

Ak
t :=

∫

T
Lt(x)µk(dx),

set

τk(t) = inf{s : Ak
s > t}.

Then, we recall from Section 4, XT
τk(t)

is the Markov process

naturally associated with

Tr
(

ET |T (k)
)

,

(note that suppµk = T (k)), considered as a Dirichlet form on

L2(µk).

Recall also that the latter process is Brownian motion XT (k) on

(T (k), dT , µk).



CONVERGENCE OF DIFFUSIONS

By construction

dPM(µk, µT ) ≤ sup
x∈T

dM(φk(x), x) = dHM(T (k), T ) → 0.

Hence, applying the continuity of local times:

Ak
t =

∫

T
Lt(x)µk(dx) →

∫

T
Lt(x)µT (dx) = t,

uniformly over compact intervals.

Thus, we also have that τk(t) → t uniformly on compacts. And,

by continuity,

X
T (k)
t = XT

τk(t)
→ XT

t ,

uniformly on compacts.



STEP 2

CONVERGENCE OF WALKS ON FINITE TREES



CONVERGENCE OF WALKS ON FINITE TREES

EQUIPPED WITH LENGTH MEASURE

For fixed k,

Tn(k) → T (k).

If Jn,k is the simple random walk on Tn(k), then
(

J
n,k
tEn,k/an

)

t≥0
→

(

X
T (k),λk
t

)

t≥0
,

where En,k := #E(Tn(k)) and XT (k),λk is the Brownian motion

on (T (k), dT , λk), for λk equal to the length measure on T (k),
normalised such that λk(T (k)) = 1.



TIME CHANGE FOR LIMIT

For (Lk
t (x))x∈T (k),t≥0 the local times of XT (k),λk, write

Âk
t :=

∫

T (k)
Lk
t (x)µk(dx),

and set

τ̂k(t) = inf{s : Âk
s > t}.

Then
(

X
T (k),λk
τ̂k(t)

)

t≥0
=

(

X
T (k)
t

)

t≥0
.



TIME CHANGE FOR GRAPHS

Let

Ân,k
m :=

m−1
∑

l=0

2µn,k({J
n,k
l })

degn,k(J
n,k
l )

=
∑

x∈Tn(k)

Ln,k
m (x)µn,k({x}),

where

Ln,k
m (x) :=

2

degn,k(x)

m−1
∑

l=0

1
{J

n,k
l =x}

.

If

τ̂n,k(m) := max{l : Â
n,k
l ≤ m},

then

X
Tn(k)
m = J

n,k
τ̂n,k(m)

is the process with the same jump chain as Jn,k, and holding
times given by 2µn,k({x})/degn,k(x).



CONVERGENCE OF TIME-CHANGED PROCESSES

We have that
(

anL
n,k
tEn,k/an

(x)

)

x∈Tn(k),t≥0
→
(

Lk
t (x)

)

x∈T (k),t≥0
, bnµn,k → µk.

This implies which implies

anbnÂ
n,k
tEn,k/an

= anbn

∫

Tn(k)
L
n,k
tEn,k/an

(x)µn,k(dx)

→
∫

T (k)
Lk
t (x)µk(dx)

= Âk
t .

Taking inverses and composing with Jn,k and XT (k),λk yields

X
Tn(k)
t/anbn

= J
n,k
τ̂n,k(t/anbn)

→ X
T (k),λk
τ̂k(t)

= X
T (k)
t .



STEP 3

APPROXIMATING RANDOM WALKS ON WHOLE

TREES



PROJECTION OF RANDOM WALK

φn,k is natural projection from Tn to Tn(k).

Clearly

lim
k→∞

lim sup
n→∞

sup
t∈[0,T ]

dM

(

XTn
t/anbn

, φn,k(X
Tn
t/anbn

)

)

≤ lim
k→∞

lim sup
n→∞

sup
x∈V (Tn)

dM(x, φn,k(x))

= lim
k→∞

lim sup
n→∞

dHM(Tn(k), Tn)

= 0.

Moreover, can couple projected process φn,k(X
Tn) and time-

changed process XTn(k) to have same jump chain Jn,k. Recall

XTn(k) waits at a vertex x a fixed time 2µn,k({x})/degn,k(x).



ELEMENTARY SIMPLE RANDOM WALK IDENTITY

Let T be a rooted graph tree, and attach D extra vertices at its

root, each by a single edge.

e.g.
T

D = 3 extra vertices

If α(T,D) is the expected time for a simple random walk started

from the root to hit one of the extra vertices, then

α(T,D) =
2#V (T)− 2 +D

D
.

In particular, if D = 2, then

α(T,D) = #V (T).



PROOF

We consider modified graph G = T ∪ {ρ} obtained by identifying
extra vertices into one vertex:

T

conductance of D on extra edge

If τ+ρ is the return time to ρ, then

α(T,D) + 1 = EG
ρ τ+ρ =

1

π(ρ)
,

where π is the invariant probability measure of the random walk.
In particular, writing λ(v) =

∑

e: v∈e λe,

π(ρ) =
λ(ρ)

∑

v λ(v)
=

D

2(D +#E(T))
=

D

2(D +#V (T)− 1)
.



SECOND MOMENT ESTIMATE

Again, let T be a rooted graph tree, and attach D extra vertices

at its root, each by a single edge.

e.g.
T

D extra vertices

If β(T,D) is the second moment of the time for a simple random

walk started from the root to hit one of the extra vertices, then

there exists a universal constant c such that

β(T,D) ≤ c
(

#V (T)2 × (1 + h(T)) +Dh(T)
)

,

where h(T) is the height of T .



PROOF

Let G = T ∪ {ρ} be the modified graph as in the previous proof.
If λ(G) =

∑

v λ(v) = 2
∑

e λe and r(G) = maxx,y∈GR(x, y), then
we claim

PG
ρ

(

τ+ρ ≥ a
)

≤
c1

r(G)D
e−c2a/λ(G)r(G).

Indeed, applying the Markov property repeatedly, we obtain

PG
ρ

(

τ+ρ ≥ a
)

≤ PG
ρ

(

τ+ρ ≥ a/k
)

(

max
x∈V (T)

PG
x (τρ ≥ a/k)

)k−1

.

For k = a/2λ(G)r(G), we have

PG
ρ

(

τ+ρ ≥ a/k
)

≤
kEG

ρ τ+ρ

a
=

1

2r(G)D
,

and also, by the commute time identity,

max
x∈V (T)

PG
x (τx ≥ a/k) ≤ max

x∈V (T)

kEG
x τρ

a
≤ max

x∈V (T)

kR(x, ρ)λ(G)

a
≤

1

2
.



PROOF (CONT.)

It follows that

EG
ρ

(

(τ+ρ )2
)

≤
c3λ(G)2r(G)

D
.

Since

β(T,D) = EG
ρ

(

(τ+ρ − 1)2
)

,

we can then use that

λ(G) = 2(D +#V (T)− 1), r(G) ≤ 2(h(T) +D−1)

to complete the proof.



CLOSENESS OF CLOCK PROCESSES

Suppose the mth jump of φn,k(X
Tn) happens at A

n,k
m . Apply-

ing the above moment estimates and Kolmogorov’s maximum

estimate, i.e. if Xi are independent, centred, then

P( max
l=1,...,m

|
l
∑

i=1

Xi| ≥ x) ≤ x−2
m
∑

i=1

EX2
i ,

we deduce

P



 max
m≤tEn,k/an

∣

∣

∣An,k
m − Ân,k

m

∣

∣

∣ ≥ ε/anbn



→ 0

in probability as n and then k diverge.



CONCLUSION

Let (Tn)n≥1 be a sequence of finite graph trees.

Suppose that there exist null sequences (an)n≥1, (bn)n≥1 such

that
(

Tn, andTn, bnµTn, ρTn

)

→ (T , dT , µT , ρT )

with respect to the pointed Gromov-Hausdorff-Prohorov topol-

ogy, and T satisfies a polynomial lower volume bound.

It is then possible to isometrically embed (Tn)n≥1 and T into

the same metric space (M,dM) such that
(

anX
Tn
t/anbn

)

t≥0
→
(

XT
t

)

t≥0

in distribution in C(R+,M), where we assume XTn
0 = ρTn for

each n, and also XT
0 = ρT .



REMARKS

(i) Can extend to locally compact case.

(ii) Alternative proof given in [Athreya/ Löhr/Winter 2014] (in

a slightly more general setting) under the weaker assumption:

for each δ > 0,

lim inf
n→∞

inf
x∈Tn

µTn(BTn(ρTn, δ/an)) > 0.

(iii) Embeddings can be described measurably, and chosen so

result applies to random trees to give convergence of annealed

laws. In particular, if
(

Tn, andTn, bnµTn, ρTn

)

→ (T , dT , µT , ρT )

in distribution, then for appropriate embeddings
∫

PTn
ρTn

((anX
Tn
t/anbn

)t≥0 ∈ ·)P(dTn) →
∫

PT
ρT

((XT
t )t≥0 ∈ ·)P(dT ).

Applies to critical, finite variance GW trees conditioned on their

size, with an = n−1/2, bn = n−1.


